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ABSTRACT 

This scoping review aims to systematically assess and synthesize current digital technologies and 

methodologies used in Canadian crop production research, including remote sensing, artificial intelligence 

(AI), the Internet of Things (IoT), robotics, and automation. The review examines how these technologies 

address key agricultural challenges, such as crop monitoring, pest management, irrigation, and soil health, 

while also exploring the perspectives of Canadian farmers, industry stakeholders, and policymakers on the 

opportunities, challenges, and ethical considerations associated with digital technology adoption in 

agriculture. The analysis centers on Canada’s unique agricultural landscape, which combines ambitious 

sustainability goals with a sociopolitical framework that influences the innovation and integration of 

Digital Agricultural Technologies (DATs). As a significant food exporter, Canada faces region-specific 

barriers to DAT adoption, shaped by regulatory considerations, data governance, and privacy concerns. 

The review highlights that, while Canadian public sector-led research and innovation funding supports DAT 

development and testing, the widespread application of these technologies remains limited, with many 

still in experimental stages. By focusing on the technical and socio-technical dimensions, this review 

contextualizes DAT adoption as influenced by institutional, regulatory, and social factors unique to 

Canada, including emission reduction targets and data sovereignty. Using a sectoral innovation system 

framework, this study integrates technical data with social science perspectives to identify barriers and 

drivers impacting DAT diffusion in Canada, proposing a Responsible Research and Innovation (RRI) 

approach to address challenges. This nuanced analysis offers insights for policymakers and stakeholders, 

underscoring the need for continued research and cross-regional validation to support sustainable DAT 

integration. Notably, while findings are specific to Canada’s crop production sector, they lay the 

groundwork for future policy directions and highlight gaps in international comparison that could inform 

Canada’s approach to DAT development. 
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INTRODUCTION  

The global population, currently at 8 billion as of 2022, is growing at an annual rate of 0.8% and is expected 

to reach 9.7 billion by 2050 (United Nations 2024). Food production will need to increase by 60-70% from 

current levels to meet the demand projected for 2050, driven by demographic and economic factors (Silva 

2018). This will put a lot of pressure on global food production systems and exacerbate the environmental 

challenges. Canada is a leading agrifood producer and exporter, and with agriculture contributing 7% to 

its Gross Domestic Product (GDP), it ranks among the OECD countries with significant agricultural 

contributions (Windfeld and Lhermie 2022). It exports around 70% of its major crops and nearly 50% of 

its beef and cattle to the rest of the world and is well positioned to significantly contribute to global food 

supply (Canadian Chamber of Commerce 2024). However, the negative externalities of increasing food 

production limit the ability to do so in an environmentally sustainable manner. The agriculture sector in 

Canada accounts for 10% of the country’s total GHG emissions and contributes to broader ecological 

challenges (ECCC 2023). GHG emissions from the crop sector are mainly composed of Nitrous Oxide (N2O), 

about 97% of which comes from fertilizer use, including synthetic and organic applications, soil cultivation, 

and manure management. Emissions from animal production primarily result from cattle enteric 

fermentation and biomass decomposition, with approximately 90% as Methane (CH4) and 10% as N2O 

(Ishaque, Bourassa, and Lhermie 2024). Canada has set a target to achieve net zero emissions across all 

sectors by 2050 to meet its international commitment on climate change mitigation with specific 

reductions within agriculture playing a major role (ECCC 2020; GoC 2023). The agriculture sector faces the 

dual challenge of increasing food production to meet global demand while significantly reducing its 

climate footprint.  

Digital agriculture technologies (DATs) have emerged as a powerful driver of this transition, advancing the 

capabilities of precision agriculture (PA) to make farming more efficient, sustainable, and data driven.  

DATs encompass an array of tools—such as big data analytics, cloud computing, IoT, and autonomous 

systems—that collect and process data to support precise, context-sensitive agricultural practices, 

improving both resource use and productivity (Agyemang and Kwofie 2021; Hailu 2023). 

The International Society of Precision Agriculture (ISPA) defines PA as a management strategy that 

“gathers, processes and analyzes temporal, spatial and individual plant and animal data and combines it 

with other information” to support decisions that align with the natural variability in fields. By enabling 

such data-rich insights, DATs are central to achieving this objective, particularly in the face of global 

challenges like climate change, resource scarcity, and the need for resilient food systems (ISPA 2024). As 

the Fourth Industrial Revolution unfolds, these advanced technologies are reshaping agricultural 

practices, paving the way for more efficient, productive, and sustainable farming methods that also 

highlight the inequalities and unsustainable practices within the current food system (Agyemang & 

Kwofie, 2021; D’Odorico et al., 2019). 

This transformative integration of DATs into PA represents a promising pathway to address the challenges 

in modern agriculture, though it also requires careful attention to social and institutional contexts to 

support wide-scale adoption and equitable access (McGrath et al. 2023) into farming practices is part of 

the broader movement known as Agriculture 4.0, also referred to as smart agriculture or digital agriculture 

(Abbasi, Martinez, and Ahmad 2022). DATs have enhanced the scope and functionality of precision 
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agriculture (PA) by advancing data collection, storage, and processing capabilities beyond traditional 

methods focused on field variability and zone management. These technologies support applications 

ranging from basic mobile-based tools for technical support and farm monitoring to sophisticated systems 

using satellites and GPS for real-time weather prediction, field mapping, and variable rate application of 

inputs. 

At the highest level, digital tools like specialized Farm Management Information Systems (FMIS) provide 

integrated platforms for managing various tasks, including crop rotation, animal handling, inventory, and 

financial management, allowing farmers to make more informed decisions from a centralized system 

(Abiri et al. 2023). This advanced connectivity and data-driven insight have made DATs essential not only 

for increasing productivity but also for promoting sustainability. 

In modern agriculture, DATs are applied both horizontally across crop and livestock production and 

vertically along the entire food supply chain, encompassing everything from primary production to retail 

trade, insurance, and international trade. The primary production stage, essential to sustaining 

downstream industries (e.g., food processing, retail) as well as upstream inputs (e.g., seed production, 

fertilizers, veterinary services), benefits greatly from DATs to meet growing demands in a sustainable 

manner (Windfeld and Lhermie 2022). In Canada, 77% of primary agricultural output comes from crop 

production, fulfilling demands for food, animal feed, and biofuel feedstock, and making DATs vital in 

supporting productivity and sustainability across these sectors. 

RATIONALE AND SIGNIFICANCE OF THE STUDY 
The DATs include the use of existing technologies such as Landsat satellites which, since their launch in 

1972, have enabled the monitoring of agricultural production across the globe, providing valuable data 

that contributing to informed decision-making in agriculture that supports productivity and land 

management (Wulder et al. 2022). Additionally, the implementation of satellite navigation through global 

positioning system (GPS) in the mid-1990s enabled automation of farm machinery, leading to more 

precise agricultural operations (precisions farming) and improved resource management (Lowenberg-

Deboer and Erickson 2019).   Some other technologies have also been used by Canadian farmers for a few 

decades such as yield monitors, autosteer, soil sampling using soil sample tests and variable rate 

technologies. However, the disruptive new innovations such as smart sensors, IoT, Cloud computing, big 

data analysis providing farmers with actionable insights to enhance decision-making. Artificial intelligence 

(AI) further expands these capabilities by analyzing vast datasets to identify patterns and predict 

outcomes, such as optimal irrigation schedules or pest outbreaks. 

Research on digital agriculture often emphasizes the technical aspects involved in deploying these 

technologies to improve agricultural practices and productivity. However, digitalization of agriculture is a 

socio-technical process of applying digital innovations and goes beyond the development and validation 

of technologies (Klerkx and Leeuwis 2009). There also exists a body of literature that focuses on the 

economic, social, ethical, and institutional aspects of digitalization using various approaches (For example, 

(Bronson 2019; Duncan 2023; Murray Fulton et al. 2021; Phillips et al. 2019; Rotz et al. 2019; Soma and 

Nuckchady 2021;). This paper integrates natural and social science literature to review research on digital 

technologies in Canadian crop production over the past decade. 
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This review aims to (1) identify and critically assess the current digital technologies and methodologies 

applied within Canadian crop production research, including remote sensing, artificial intelligence (AI), 

the Internet of Things (IoT), robotics, and automation. Emphasis will be placed on evaluating how these 

technologies address significant agricultural challenges such as crop monitoring, pest management, 

irrigation, and soil health management; and (2) examine the perspectives of Canadian farmers, industry 

stakeholders, and policymakers on the opportunities, challenges, and ethical considerations surrounding 

the adoption and integration of digital technologies in crop production systems. This study centers on 

Canada’s unique sociopolitical dynamics, agricultural practices, and innovation framework, which create 

specific pressures and opportunities in adopting digital agriculture technologies (DATs). As a major food 

exporter with ambitious sustainability goals, Canada faces regulatory challenges and adoption barriers 

that vary across regions. This country-specific focus enables a more accurate understanding of how DATs 

are tested, applied, and adopted, while also examining key social dimensions like data governance, 

privacy, and security concerns. 

METHODOLOGY 
This review follows the PRISMA-ScR framework ((Tricco et al. 2018; Page et al. 2021)) for scoping reviews.  

Protocol and Registration: 

A protocol was developed in line with PRISMA-P guidelines (Moher et al. 2015) and has been published in 

the Digital Repository of the University of Calgary (Sanguinetti et al. 2024) (Supplementary material 1).  

Eligibility Criteria:  

The eligibility criteria were specified for the population (P), intervention (I), comparators (C), outcome (O), 

and study design (S) (O’Connor et al. 2017). Within this review, three different types of primary research 

were identified. These were intervention studies where a DAT was tested in a main crop in Canada, uptake 

and qualitative studies, and policies identified from policy reviews. Not all the elements described will be 

relevant to all three types of primary research.  The population of interest were the principal field crops 

during their growing stages i.e. plantation to harvesting (AAFC 2024).  The interventions of interest 

included digital technologies farms could use to inform decision-making. Agricultural digital technologies 

refer to the multifaceted process that involves a) generating and collecting data using devices (e.g., 

sensors and satellites), b) integrating data to software platforms and statistical analysis (e.g., using 

Machine Learning), and c) providing output that facilitates the interpretation of results (e.g., a screen). 

Studies were retained where technologies assessed had at least one of the previous steps commercially 

available in Canada, and the assessment was conducted in Canada. Studies were required to have a 

concurrent comparison group (e.g. placebo or alternate assessment). For intervention studies, outcomes 

of interest included the intended use of the technology, statistical outcomes reported, and conclusions 

concerning which technology or statistical method used outperformed others. For uptake and qualitative 

studies, outcomes were adoption rates, motivators, and barriers to adoption.   Randomized and non-

randomized controlled trials and observational studies were included. Intervention studies were required 

to statistically assess the performance of digital technology. The full text had to be written in English and 

published in a peer-reviewed journal, thesis, or conference proceeding.  



 

DOCUMENT TYPE October 31,2024 simpsoncentre.ca 5 

Database search:  

The literature search covered multiple databases, including CAB Abstracts, BIOSIS, Web of Science, IEEE 

Xplore, and ProQuest Dissertations. The initial search was conducted on November 15, 2023, with an 

update on February 9, 2024. Search results were imported into Covidence (Veritas Health Innovation, 

Melbourne, Australia). Duplicated studies were removed automatically by the software and manually by 

the reviewers. Another review was used as a reference to confirm all relevant studies were being retrieved 

by the search strategy (Green, Fernandez, and MacPhail 2021).  Additional studies were identified and 

included manually by the reviewers (Duncan 2018; Lemay et al. 2022 etc.) A librarian conducted the search 

strategy using controlled vocabulary and keywords related to DATs, limiting results to studies in English 

published from 2013 onwards. Detailed search strategies are provided in Supplementary materials 1 and 

2. 

Evaluation Process: 

This review applies the sectoral innovation system (SIS) framework to analyze how various actors 

contribute to developing, producing, and adopting digital agricultural technologies (DATs). Within this 

framework, farmers, advisors, technology designers, and policymakers are positioned not only as end-

users but also as co-developers, contributing insights that shape the technology lifecycle. Our evaluation 

process was structured in two stages, ensuring that each reviewer fully understood the inclusion and 

exclusion criteria for identifying relevant studies (Dohoo, Martin, and Stryhn 2009; O’Connor et al. 2017; 

Sargeant and O’Connor 2020). 

During the initial screening, titles and abstracts of studies were reviewed with guidance from signalling 

questions, and studies were classified for inclusion or exclusion. Conflicts were resolved through 

discussion between reviewers, with a third reviewer consulted if needed. In the second stage, full texts of 

studies were screened based on the SIS approach, categorizing each study by its contributions to different 

stages in the innovation process, such as validation, production, and adoption (Malerba 2002). Data 

extracted included study identifiers (author, year, funding, location) and, where relevant, specific details 

of DATs such as intended use, target crops, data collection and analysis methods, and the stakeholder 

dynamics that influenced outcomes. 

Synthesis of results: 

To synthesize results effectively, we categorized studies based on their focus within the DAT innovation 

continuum (Busse et al. 2014a). Technical studies, aligning with the validation phase, were organized by 

technology type, crop type, data collection technology, and analysis methods. Summaries of findings for 

these studies were compiled, and matrices were created for cases with more than two studies, allowing 

us to identify trends across similar crop types, data collection approaches, and statistical outcomes 

(Green, Fernandez, and MacPhail 2021). 

Qualitative studies were grouped by stakeholder perspectives, which enabled a comparative analysis of 

factors affecting DAT adoption. For each stakeholder group, personal, interpersonal, and contextual 

determinants were analyzed and compared (Bronson and Knezevic 2019). This process helped to map the 
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social dimensions within the production and adoption phases of DAT innovation, capturing how social and 

institutional dynamics influence technology uptake beyond the farm level. 

Analytical Framework: 

This review employs the sectoral innovation system (SIS) framework to examine the development, 

production, and adoption of digital agricultural technologies (DATs) in Canadian crop production. In this 

system, various actors—such as scientists, entrepreneurs, and farmers—collaborate within a shared 

knowledge environment to address sector-specific challenges (Bergek et al. 2008; Malerba 2002). The 

innovation process is viewed in three phases (Busse et al. 2014a): 

Validation: Technical studies in this review highlight recent advancements in DATs and prototype testing, 

representing the knowledge creation essential for early-stage innovation. 

Production: This phase includes scaling from prototypes to market-ready products, requiring collaboration 

among developers, manufacturers, and regulators. Insights from international literature guide the 

analysis of factors critical for successful DAT commercialization. 

Adoption: Adoption, shaped by broader institutional and policy dynamics, involves farmers not only as 

users but also as co-developers whose feedback refines DATs to align with practical needs (Bronson 2019). 

The SIS framework thus provides a structured view of the full DAT lifecycle, encompassing technology 

creation, scaling, and the systemic factors influencing adoption. Figure X illustrates these phases and actor 

roles. 

RESULTS 

The search strategy found 1283 relevant studies, of which 248 duplicates were removed. One thousand 

and thirty-five studies underwent title and abstract screening, and 818 were excluded during this stage. 

Two hundred and seventeen studies underwent full-text screening, and 83 were included in the narrative 

review Figure 1. 
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Figure 1 Prisma flowchart of the scoping review in a scoping review of agricultural digital technologies 

developed and assessed in main crops and barriers and motivators of different stakeholders for their 

adoption in Canada. 

STRUCTURED REVIEW OF TECHNOLOGIES AND STAKEHOLDER INSIGHTS 

The technical studies predominantly focused on the validation stage, encompassing research, 

prototyping, and experimental testing of DATs in Canadian crop production (Busse et al. 2014a). These 

studies demonstrated the feasibility of various DAT applications, detailed crop-specific data collection 

methods, and assessed different analytical techniques, providing foundational knowledge for DAT 

development. 

In contrast, the qualitative studies explored the production and adoption stages, analyzing stakeholder 

perspectives to uncover factors shaping DAT market dynamics, user experiences, and broader institutional 
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influences on adoption (Bronson 2019; Klerkx, Jakku, and Labarthe 2019). These studies underscored the 

importance of system-level support and engagement with a variety of stakeholders, as adoption is 

affected by both the broader social context and direct farm-level applications (Higgins et al. 2017; Malerba 

2002). 

  

Figure 2 Distribution of Reviewed Studies by Digital Technology Application in Canadian Crop Research. 

The studies reviewed on DAT implementation in Canadian crop production were categorized according to 

specific application areas, providing a clear view of their distribution across soil and crop management 

needs. These categories included Soil Properties Prediction, Soil Mapping, Soil Moisture Estimation, Crop 

Properties Prediction, Crop Yield Prediction, Fertilizer Optimization, Precision Irrigation and Planting, and 

Pest and Weed Control (Figure 2). This distribution highlights the diverse applications of DATs, with soil 

and crop-focused technologies addressing fundamental agricultural needs for improved productivity, 

resource efficiency, and environmental sustainability. Most of the technical studies included in this review 

were conducted in Ontario. A substantial number of studies have also been done in Manitoba. A detailed 

distribution of the number of studies conducted in each province are shown in Figure 3. 
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Figure 3 Provincial Distribution of DAT Studies by Technology Application Category in Canadian Crop 

Production 

DAT APPLICATIONS IN CROP PRODUCTION 

Soil Properties Estimation: 

The estimation of physical, chemical, and biological soil attributes—such as texture, organic matter, 

nutrient content, pH, soil electrical conductivity, and cation exchange capacity—is essential for effective 

zone delineation and management. Traditionally, soil assessment has relied on labor-intensive surveys 

and lab analyses. However, advancements in sensor technology have enabled the mapping of soil 

heterogeneity more efficiently. These sensors produce signals that correlate with specific soil properties, 

either through remote or proximal sensing systems (PSS), depending on their distance from the soil 

(Nandkishor Motiram Dhawale 2015). Compared to traditional methods, PSS technologies allow for high-

volume data collection with lower labor demands (Huang 2007). 

Active PSS systems, such as ground-penetrating radar (GPR) for soil water content and electromagnetic 

induction (EMI) for soil electrical conductivity, introduce energy into the soil to measure responses. 

Passive systems, like near-infrared and ultraviolet-visible-near-infrared (vis-NIR) spectrometers, measure 

natural gamma-ray radiation for soil composition analysis. Table 1 categorizes proximal soil sensing (PSS) 

technologies by their operation type—active or passive sensing—and by their mode of soil contact, 

distinguishing between contact-based and non-contact methods. This classification highlights the 

diversity in PSS approaches tailored for different soil properties and field conditions. Direct PSS techniques 

measure soil properties using in-situ analyzers. Most PSS systems operate as on-the-go sensors, using 

Real-Time Kinematic (RTK) GNSS to create georeferenced surface maps that inform management practices 

(Md Saifuzzaman 2020). For example, (Adamchuk and Dhawale 2014) introduced an on-the-spot soil 
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analyzer (OSA) capable of deploying multiple sensors simultaneously on all-terrain vehicles, capturing data 

at specified depths. 

Table 1 Categorization of PSS Technologies Based on Operation Type and Soil Contact 

Sensor Type Active/Passive Direct/Indirect 

Ground Penetrating Radar (GPR) Active Direct 

Electromagnetic Induction (EMI) Active Direct 

Gamma Ray Spectroscopy Passive Direct 

Near Infrared (NIR) Passive Indirect 

Mid Infrared Passive Indirect 

Ultraviolet–Visible–Near–Infrared (vis-NIR) Spectrometers Passive Indirect 

Ground-penetrating radar (GPR) (using radio and microwaves) Active Indirect 

Source: (Huang 2017; Rossel et al. 2011) 

Calibration models are then validated with independent datasets, ensuring reliable soil property 

estimates. The predictive performance of these models varies depending on the soil properties, 

agronomic conditions, and dataset size. For example, found that partial least squares regression 

outperformed simple linear regression when predicting soil organic matter and texture using vis-NIR 

sensors. Additionally, Dhawale et al. (2022) showed that mid-NIR spectrophotometers predicted sand 

content more accurately than portable mid-IR sensors, while vis-NIR spectrophotometers better 

estimated clay content. 

Of the fourteen studies reviewed, twelve used PSS techniques, including EMI, mid-IR, and gamma-ray 

spectrophotometers, to predict physical soil properties like moisture, texture, CEC, and pH (Altdorff et al. 

2020; Badewa et al. 2019; N M Dhawale et al. 2022; Ji WenJun et al. 2019; Laamrani et al. 2019; M 

Saifuzzaman et al. 2021). Taneja et al. (2021) used cell phone images to estimate soil moisture and 

nitrogen levels. Two studies in this category used remotely sensed data for soil characterization and 

nutrient detection: Bouroubi et al. (2014) used multispectral imagery using Worldview- 2 satellite and 

(Wrozyna 2020) used UAV mounted sensors. Calibration methods across these studies included machine 

learning, regression, and simulation models (Table 2).  
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Table 2 Summary of Studies on Soil Properties Estimation: Crop Types, Data Collection Techniques, and 

Data Analysis Methods

 

 Thematic Soil Mapping: 

The call for site-specific management (SSM) through variable-rate nitrogen (N) applications has increased 

in recent years among government agencies and farming communities. SSM typically operates within 

management zones, or field sub-areas exhibiting uniform soil, crop, or yield characteristics (Dong et al. 

2019). High-density sensor measurements, combined with spatio-temporal data, provide a detailed 

understanding of soil variability that enables accurate SSM (Hengl et al. 2018). 

Proximal and remote sensing technologies help delineate homogeneous field zones by mapping field 

heterogeneity and environmental variables, creating thematic soil maps. Digital soil mapping (DSM) 

correlates environmental data from remote and geospatial sources with machine learning models to 

predict soil properties. This method produces thematic maps, like those for soil organic carbon, moisture, 

and nutrients, which support precision agriculture, environmental management, and land-use planning. 

This review examined seven studies focused on thematic map applications (Altdorff et al. 2020; Dong et 

al. 2019; Huang 2017; H. Lee, Wang, and Leblon 2020; Paul, Heung, and Lynch 2022; Md Saifuzzaman 

2020; Vlachopoulos et al. 2022). Thematic maps were created for various agricultural needs, including 

nitrogen optimization, soil property mapping, field variability analysis, and crop health assessment. Three 

studies used remote sensing devices, including Landsat data (Paul, Heung, and Lynch 2022), UAVs with 

multispectral sensors (H. Lee, Wang, and Leblon 2020; Vlachopoulos et al. 2022), and RapidEye satellite 

data (Dong et al. 2019). Altdorff et al. (2020) evaluated electromagnetic induction sensors for mapping 

soil properties, while (Huang 2017) used multi-sensor soil maps compared with satellite imagery and 

regression-based calibration models. Table 3 summarizes the thematic map applications explored across 

the reviewed studies. 

Table 3 Summary of Studies on Soil Properties Estimation: Crop Types, Data Collection Techniques, and 

Data Analysis Methods
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 Soil Moisture Estimation: 

Soil moisture (SM) is a key factor in agricultural productivity, affecting crop yields and influencing the 

occurrence of natural disasters such as droughts and floods. Its high spatial and temporal variability makes 

large-scale measurement challenging, particularly through in situ monitoring networks (Li JunHua and 

Wang ShuSen 2018). Traditional in situ methods, like time-domain reflectometry (TDR) and Stevens 

HydraProbe sensors, can measure SM accurately but are too costly for widespread spatial application (S. 

J. Lee et al. 2023). Satellite-based sensors and techniques have been widely employed for SM estimation, 

especially through microwave remote sensing, which has been effective over the past two decades (Calvet 

et al. 2011; Ulaby, Moore, and Fung 1981). Microwave sensors include active types, with both transmitter 

and receiver elements (e.g., radars), and passive types, which only have receivers (e.g., microwave 

radiometers) (Ulaby, Moore, and Fung 1981). Satellites such as Sentinel-1 utilize C-band SAR to capture 

radar backscatter changes that correlate with SM levels, while L-band instruments like SMOS, AQUARIUS, 

and SMAP monitor SM and ocean salinity (Abbes, Magagi, and Goita 2019; Champagne et al. 2016). 

Combining SAR, passive radiometry, and optical sensors provides a comprehensive SM monitoring 

approach across varying conditions and scales. 

This review identified several studies using remote sensing technologies to estimate SM, including 

UAVSAR, SMOS, RADARSAT-2, and Sentinel-1 and 2 (Abbes, Magagi, and Goita 2019; Akhavan et al. 2021; 

Champagne et al. 2016). Machine learning (ML) methods were commonly applied to analyze remotely 

sensed data, given their usefulness in capturing complex, non-linear data behavior (Ali et al. 2015). Table 

4 presents a summary of the findings within this category of studies. 

Table 4 Summary of Studies on Thematic Soil Mapping: Crop Types, Data Collection Techniques, and Data 

Analysis Methods 

 

Crop Properties Prediction: 

Remote sensing technologies, especially multispectral and hyperspectral Earth observation (EO) imaging, 

are used in precision agriculture to capture spatial variability in plant growth. These methods enable early 

detection of crop needs such as fertilizer, irrigation, and pest control by analyzing vegetation indices like 

the Normalized Difference Vegetation Index (NDVI), which estimates parameters such as Leaf Area Index 

(LAI) and biomass (Bourassa and Vinco 2022). Various methods of high-resolution imagery collection—

UAV imagery, satellite, and aerial photography—allow detailed monitoring at different scales. 

In this review, eight studies estimated crop parameters using remote sensing technologies. UAV 

multispectral imagery, for example, was used by (H. Lee, Wang, and Leblon 2020) and Song et al. (2016) 

to predict canopy nitrogen weight, while Vlachopoulos et al. (2022) estimated the green area index for 
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mapping crop health. These studies applied machine learning and multiple linear regression models to 

predict crop parameters, indicating growing reliance on advanced analytics. Hosseini et al. (2015) showed 

that C and L band Synthetic Aperture Radar (SAR) sensors reliably monitored crop productivity regardless 

of weather conditions by using the Water Cloud Model-Ulaby (WCM-Ulaby) model. Additionally, studies 

highlighted that SAR polarimetric integration H. Lee, Wang, and Leblon (2020) with spectral vegetation 

indices could improve dry biomass and LAI estimation (Bahrami et al. 2021). Table 5 presents a summary 

of the findings within this category of studies. 

Table 5 Summary of Studies on Crop Properties Estimation: Crop Types, Data Collection Techniques, and 

Data Analysis Methods 

 

Crop Yield Prediction: 

The within-field variability of soil properties is directly related to spatial and temporal differences in crop 

productivity, growth, and yield (Dong et al. 2019). Ground-based sensing methods, such as electrical 

conductivity, provide useful soil property information for zone delineation but lack economic viability on 

a large scale. Remote sensing presents a more efficient option, enabling soil and crop data collection over 

vast areas. Advances in high-resolution optical sensors like RapidEye and Sentinel-2, which feature 

frequent revisit cycles, allow for fine-scale detection of spatial patterns in soil properties, crop growth, 

and productivity and can even aid in yield prediction (Jing et al. 2016). 

The studies reviewed used both proximal and remote sensing technologies to predict crop yields in 

Canadian soils, collecting data through hand-held imaging devices (Bi et al. 2023), yield sensors on 

combines with GNSS receivers (Burdett and Wellen 2022; Capmourteres et al. 2018), topographic LiDAR 

data (Eyre et al. 2021), satellite imagery ((Dong et al. 2019; Gogoi et al. 2023; Liao et al. 2023a), and UAVs 

(Killeen et al. 2024; Song and Wang 2016). Vegetation indices derived from satellite data, such as NDVI, 

EVI, EVI2, MTVI2, WDRVI, and NDWI, were extensively utilized for yield prediction (Liao et al. 2023a). 

These indices have proven effective for forecasting yield and informing stakeholders like producers and 

policymakers (Killeen et al. 2024). 

Another subset of studies employed agroecosystem simulation models to simulate crop growth and 

dynamics of soil carbon, water, and nitrogen in agricultural systems. The DSSAT v4.6 model, for instance, 

was used to simulate spring canola with the CSM-CROPGRO-Canola model (Jing et al., 2016), while the 

DSSAT-CSM and DSSAT-CERES models simulated wheat and maize responses to various inputs (Li et al. 

2015; Liao et al. 2023b; Liu et al. 2021). These models vary in their approaches to simulating crop and soil 

processes, depending on specific data and parameters. Table 7 presents an overall summary while Table 

6 provides a detailed summary of the studies on yield prediction included in the review. 
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Table 6 Summary of Studies on Crop Yield Prediction: Crop Types, Data Collection Techniques, and Data 

Analysis Methods 

 

Table 7 Summary of Yield Prediction Studies 

Author(s) Year Data Type Method Type Approach 

Bi et. al. 2023 Images captured 

using handheld 

device 

Remote sensing Image segmentation and deep-web 

method CNN-LSTM 

Burdet and 

Wellen 

2022 Harvest Yield 

Monitor 

Ground 

measurements 

Multiple linear regression, Artificial 

Neural Networks, Random forests, and 

decision trees  

Capmourteres 

et. al. 

2018 Harvest Yield 

Monitor 

Ground 

measurements 

Profit map using a Kriging interpolation 

Dong et. al. 2019 Satellite Imagery Remote sensing ANOVA with Tukey–Kramer test Fuzzy C-

mean Clustering (FCM) algorithm 

Eyre et. al. 2021 LiDAR surface data Proximal sensing Geographic weighted regression (GWR) 

technique 

Gogoi et. al. 2023 Satellite Imagery Remote sensing Linear regression model 

Herath et. al. 2017 Soil Sampling Ground 

measurements 

Pearson’s correlation 

Jing et. al. 2016 Field experiments Ground 

measurements 

DSSAT-GROPGRO simulation model 

Killeen et. al. 2022 UAV imagery Remote sensing Random Forest model and Linear 

Regression 
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Liao ChunHua 2022 Satellite Imagery Remote sensing Multivariate linear regression (ML) and 

three simple unsupervised domain 

adaptation (DA, ML) methods 

Liu 2021 Field experiments Ground 

measurements 

DSSAT-CERES Simulation 

Li ZhuoTing 2015 Field experiments Ground 

measurements 

DSSAT-CSM Simulation 

Liu 2014 Field experiments Ground 

measurements 

DSSAT-CSM Simulation 

Song 2020 UAV imagery Remote sensing Point Cloud Method and simple algorithm 

for yield estimation (SAFY) 

Fertilization Optimization:  

Farmers require decision support to address spatial heterogeneity within fields for site-specific nitrogen 

fertilization and N management practices. Given that fertilization significantly contributes to agricultural 

expenses, optimizing fertilizer efficiency can substantially reduce costs. This involves considering soil 

factors (e.g., water, tillage), fertilization techniques (e.g., variable rates, application methods), and crop-

specific needs (Shinde 2017). Ten studies in this review focused on improving nitrogen (N) management 

in agriculture using digital technologies and through diverse methods tailored to specific goals. Some 

studies aimed to determine the effectiveness of variable rate N application in reducing N2O emissions and 

enhancing yield in no-till canola production (Glenn et al. 2021). The other studies evaluated decision 

support systems like DSSAT for simulating crop responses to N application and soil water storage or 

compared variable- and uniform-rate N strategies in maize to assess their impact on yield and soil nitrogen 

(Liu et al. 2021; Shinde 2017). Additionally, certain studies developed machine learning models and UAV-

based tools to predict canopy nitrogen levels and optimize site-specific N recommendations ((Ma, Wu, 

and Shang 2014; Song and Wang 2016; Yu, Wang, and Leblon 2021). Collectively, these studies sought to 

enhance precision in N management to boost yields, improve economic outcomes, and reduce 

environmental impacts. Table 8 presents a summary of the studies on fertilizer optimization. 

Table 8 Summary of Studies on Crop Yield Prediction: Crop Types, Data Collection Techniques, and Data 

Analysis Methods 
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Pest and Weed Control: 

Four studies assessed digital technologies intended to tailor the use of pesticides and herbicides in crops 

(Das 2021; Stanhope 2016; Truong, Dinh, and Wahid 2017; Zhang ChunHua, Walters, and Kovacs 2014) 

(Table 9). Within the three, data was gathered using cameras mounted to a quad (Das 2021), farm 

equipment (Stanhope 2016), IoT sensors (Truong, Dinh, and Wahid 2017); and near-IR camera mounted 

on a UAV (Zhang ChunHua, Walters, and Kovacs 2014). Methods to analyze data included deep learning 

and machine learning methods (Das 2021; Truong, Dinh, and Wahid 2017), NDVI-derived maps (Zhang 

ChunHua, Walters, and Kovacs 2014), and other algorithms developed with Python (Stanhope 2016). 

Table 9 Summary of Studies on Pest and Weed Control: Crop Types, Data Collection Techniques, and Data 

Analysis Methods  

 

 Precision planting and Irrigation: 

There are three studies in this category. Françis and Laforest (2015) developed a smart tractor system for 

PA, designed for smaller farms. It included variable rate control for tractor speed based on sensor inputs 

and an automated planting system adjusting depth using a soil moisture sensor. Post-emergence crop 

vigor was assessed with aerial imagery and a Greenness Excess Index (GEI). The results highlighted that 

inconsistent speed response and varying planting depths impacted crop performance, with 5.0 cm 

emerging as the optimal planting depth in different moisture conditions. However, findings on the ideal 

depth in wet and dry soils were inconsistent. Dhillon et al. (2022) compared precision planting with a 

vacuum planter and conventional air drill for canola in southern Alberta. In some cases, there was no 

significant yield difference. Sadri et al. (2022) focused on developing a machine learning algorithm 

(Random Forest) to forecast irrigation needs for crops like canola and spring wheat. 

Analysis of Funding Sources for Crop Production Research in Canada: 

Federal funding is the predominant source across most provinces, particularly in Ontario and Quebec, 

reflecting strong federal support for agricultural research. Provincial agencies also play a significant role, 

especially in Quebec and Manitoba, while producer groups contribute minimally, seen only in a few 

provinces. Additionally, a category labeled "Other" appears across several provinces, suggesting 

alternative funding sources beyond federal, provincial, and producer group contributions. This 

distribution highlights the regional differences in funding structures and the importance of diverse funding 

sources in advancing agricultural research. Figure 4 illustrates the distribution of funding sources by 

province for crop production research studies in Canada. 
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Figure 4 Funding Sources by Province for Crop Production Research Studies 

DIGITAL TECHNOLOGY PRODUCTION AND ADOPTION 

The review of technical research studies highlights the recent developments in both fundamental and 

applied research on digital agricultural technologies (DATs), as well as the experimental testing of 

prototypes and analytical methods for diverse applications in Canadian crop production. This represents 

knowledge creation and cutting-edge research that has the potential to be commercialized. This phase of 

the innovation process can be termed as ‘validation’ phase of the three-phase continuum defined by 

Busse et al. (2014). To study the ‘production’ and ‘adoption’ phases of the process, it is necessary to 

explore the interplay of the innovation system components and the outcomes of innovation activities 

(Busse et al. 2014). The second set of studies in this scoping review present the qualitative research on 

digital agriculture in the last decade. These include studies on DAT adoption which take a dynamic system 

perspective suggesting that technological advancements are influenced by complex institutional factors 

operating at multiple levels beyond the farm itself (Bronson 2019). The ‘production’ phase comprises mass 

production and market launch and there is extensive international literature that explores various types 

of innovation systems, analyzing their characteristics and assessing their performance (see. (Higgins et al. 

2017; Klerkx and Leeuwis 2009; Malerba 2002). Although there are very few studies conducted in Canada 

that provide an analysis on production stage of the innovation process, this review presents the positive 

and normative dimensions of stakeholder inclusion during the technology design phase of production of 

DATs. For example, Bronson (2019; Ebrahimi, Sandra Schillo, and Bronson 2021) explore the impact of 

decisions made by scientists and designers at the design stage of DAT development which maybe 

responsible for uneven adoption at a much later stage. 
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The research that explores the ‘adoption’ phase of the innovation process discuss three broad topics: the 

dynamics of DAT adoption in Canada; challenges associated process of change with DATs; and frameworks 

aimed at addressing these challenges. These studies take two types of approaches: political economy 

framework and constructivist approaches from science and technology studies (STS). The former analyzes 

the role of DATs in shaping power relations, market dynamics and structures (see, for example, (Bronson 

and Knezevic 2016; 2019; Duncan 2018; Phillips et al. 2019; Rotz, Duncan, et al. 2019). The STS framework 

focuses on how various socio-cultural factors shape the development of DATs. This framework explores 

the discourse surrounding DATs and how they are understood by different actors, affecting the adoption 

(for example, (Duncan et al. 2021; Soma and Nuckchady 2021). Adoption rates, factors, barriers, and 

implications of DATs can be analyzed using both political economy and Science and Technology Studies 

(STS) frameworks. While political economy focuses on how economic structures and power dynamics 

shape adoption, the STS examines the social and cultural contexts influencing technology development 

and use. Together, these approaches provide a holistic understanding of the forces driving DAT adoption, 

from institutional power to social practices. 

Variability in DAT Adoption Rates:  

Technology adoption rates in Canada and associated factors have been explored only recently and the 

Canadian Census of Agriculture (COA) by Statistics Canada (2016) was one of the first efforts to collect 

data on technology adoption on Canadian farms (Duncan 2018). The list of technologies changed in the 

next COA in 2021 making it difficult to analyze the tends in technology adoption (Statistics Canada 2021). 

The adoption rates of various technologies within the Canadian crop sector exhibit significant variation, 

depending upon factors such as survey methodology, respondent demographics, and regional geography. 

For instance, the adoption of DATs among Ontario grain farmers has been reported at varying rates: 67% 

by the COA in 2016, 65.4% by COA in 2021, 96% by Mitchell, Weersink, and Erickson (2018), and 73% by 

Ruder (2019). These discrepancies do not necessarily reflect changing trends in DAT adoption among 

Ontario crop farmers but are largely attributed to variations in the types of technologies considered, 

differences in respondent demographics, and sample sizes across the studies. 

The adoption rates also vary significantly for different technologies. Table 10 presents a summary of 

adoption rate of various agriculture technologies in Canada crop farms per Census of Agriculture 2021. 

Autosteer systems are utilized by 67% of oilseed and grain farms, whereas Geographic Information 

Systems (GIS) and Variable Rate Applications (VRT) are adopted by only 32% and 35% of farms, 

respectively. The variation in adoption rates for GPS technologies, such as auto-steer systems, compared 

to more complex PA tools like variable rate application technologies, illustrates a critical factor influencing 

adoption: the balance between value added and the associated costs. Auto-steer systems, which require 

minimal additional skills, have higher adoption rates, whereas technologies necessitating new skills and 

decision-making models face lower adoption due to the perceived complexity and required investment in 

knowledge and resources (Mitchell, Weersink, and Erickson 2018). Duncan (2023) surveyed 964 Canadian 

crop producers using digital technologies and found that 33% were high-tech adopters, utilizing both basic 

and intermediate technologies like autosteer and farm management software. In contrast, 72% were 

categorized as low-tech adopters. 
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Table 10 Technology adoption in Canadian Crop Farms

 

 * Data reported on principal field crops per Table: 32-10-0359-01 classification of Statistics Canada (2021) 

The adoption rates also vary with how the question is farmed about a particular technology and the 

findings of different studies are not objectively comparable. For example, the adoption rate of Geographic 

Information Systems (GIS) according to the Statistics Canada (2021), is notably lower than that of variable 

rate application of inputs (VRA), even though VRA typically follow GIS-based soil mapping. The 

questionnaire in this study asks about variable rate input application in general, rather than focusing on 

specific technologies or equipment. In many cases, zone delineation is performed using traditional grid 

soil sampling and testing, with inputs applied based on soil test results. This process doesn't always require 

the use of rate controllers or section controls that operate with GIS for pre-planned input applications like 

fertilizers, herbicides, pesticides, or seeding. This may explain the higher adoption rate of VRA compared 

to GIS-based soil mapping. However, the percentage of respondents using soil sampling is significantly 

higher than both, reinforcing this observation.  

DAT Adoption Dynamics:  

The different approaches to study the adoption dynamics have led researchers to draw different 

conclusions about the level of adoption of DAT by Canadian crop framers. All studies included in this 

review that surveyed farmers reported adoption rates of high-tech DATs, such as field mapping, variable 

rate technologies, and digital imagery, to be approximately 50% or lower (Duncan 2023; Ruder 2019). The 

interpretation of these rates is subjective, with Mitchell, Weersink, and Erickson (2018), and Jim Timlick 

(2023) classifying them as indicative of low adoption, while Duncan (2023) and Lorraine A. Nicol and Nicol 
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(2018) views them as relatively high. There is yet another challenge interpreting the results from these 

studies: the use of DATs does not always reflect the use of data for farming decisions. Duncan (2023) 

found that five percent of the crop producers who were using DATs did not collect or store any data. The 

percentage of DAT users who do not utilize data for informed decision-making is likely even higher, raising 

concerns about whether adoption rates truly reflect comprehensive or effective integration of digital 

agriculture practices. 

The STS literature has also on attempted to explore the relationship between farmers’ demographic and 

farm characteristics and technology adoption. Large sized farms generally exhibit higher field variability 

than smaller farms and DAT adoption improves productivity by efficient management of soils, inputs, and 

crops. The COA 2021 results reveal that large sized (greater than 2240 acres) oil seed and grain farms are 

generally more likely to adopt DATs as compared to farmers of other crop or small-sized farms (less than 

71 acres). Duncan (2023) also finds similar results and associates age and experience as factors affecting 

adoption DATs. Their study does not find education level as a significant factor, a result also drawn by L A 

Nicol and Nicol (2021) for Southern Albertan and Steele 2017 for Western Canadian crop farmers. While 

there is no conclusive evidence in Canadian literature on the role of demographics in technology adoption, 

several barriers have been identified. These barriers include financial pressures for farmers, the high cost 

of technologies, farmers perceiving the costs of PA technologies outweighing the benefits they receive, 

lack of technical knowledge, poor rural internet connectivity, and producers having little confidence in 

agronomic recommendations provided by vast amounts of data generated (Mitchell, Weersink, and 

Bannon 2021; L A Nicol and Nicol 2021; Steele 2017). Low adoption rates may also stem from insufficient 

communication regarding the benefits and potential impact of digital technologies on agricultural 

productivity and sustainability. Addressing these barriers requires a collaborative effort involving 

government support, industry initiatives, educational programs, and technological advancements tailored 

to the specific needs and challenges faced by Canadian farmers (Phillips et al. 2019). 

Data Management and Power Dynamics:  

The adoption of DATs is a business decision and depends on a variety of factors. Rose et al. (2016) 

discussed fifteen factors affecting the use of decision support tools, most of which have are relevant to 

the adoption of DATs in Canada. The growing emphasis on PA, which relies heavily on extensive data 

collection and processing through DATs has introduced new challenges related to data usage, ownership, 

and security. The qualitative research in Canadian context that explores the socio-technical dimensions of 

DATs and the extensive amount of data generated can be grouped into the following three broad 

categories. 

Data Ownership, Control and Governance: 

Since data is central to PA and digital agriculture, questions about data ownership and its interoperability 

across platforms and equipment from different vendors have been widely discussed in the literature (see 

Bronson and Knezevic 2016; Murray Fulton et al. 2021; Soma and Nuckchady 2021; Mitchell, Weersink, 

and Erickson 2018). The debate on these issue ranges from farmers’ lack of clarity on terms and conditions 

of using DATs which in many cases limits their ability to use it on a different equipment or platforms. Large 

vertically integrated companies like John Deere (JD) offer data analytics platforms to process data 
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collected by their equipment and share insights with farmers. However, access to the raw data is restricted 

by contractual terms that allow the equipment manufacturers to maintain control over the data (Rotz, 

Duncan, et al. 2019). Farmers have limited influence over giving consent for the use of their data and the 

sharing of farm data with third parties, making this a challenging issue in ethical marketing of DATs (Soma 

and Nuckchady 2021). 

Digital Power Concentration:  

One consequence of data ownership and control by equipment manufacturers is the concentration of 

market power among large corporations. Despite generating the data, farmers often lack access even to 

aggregated and anonymized versions of their own farm data, as international agreements tend to 

prioritize software protection over farmers’ rights to data (Bronson 2019). This has led to the development 

of new market structures, shaped by the formality of contractual arrangements and varying levels of 

interoperability. 

(Phillips et al. 2019) categorize DAT and service providers in Western Canada into four distinct market 

structures, with the corporate model—exemplified by companies like John Deere—being characterized 

by closed systems and limited interoperability. This lack of flexibility, combined with the manufacturers’ 

retention of the 'right to repair,' creates a lock-in effect, forcing farmers into long-term reliance on specific 

DATs and providers (Soma and Nuckchady 2021). Such concentrated market power increases farmers' 

dependency on these corporations, allowing them to influence market trends, research priorities, and 

even public policy to their advantage, further entrenching the power imbalance in the agricultural sector.  

Privacy, Security, and Ethical Implications: 

The integration of DATs has diverse impacts on social dynamics and human values, from individual data 

privacy concerns to broader data sovereignty challenges. When equipment manufacturers control farm 

data, farmers lose autonomy over how their data—whether anonymized or not—is used, shared, and 

monetized. This lack of control also raises concerns about data security, with farmers fearing equipment 

hacking and breaches of personal data (Fulton et al., 2021). Many companies, such as John Deere and 

Bayer, are headquartered outside Canada, meaning that the data they store, and process is subject to 

foreign laws. This presents significant challenges to data sovereignty and security, as control over digital 

knowledge in agriculture may become a modern form of land acquisition in the 21st century, given the 

growing value of big data (Duncan 2023; Murray Fulton et al. 2021; Soma and Nuckchady 2021). 

Data sovereignty is also particularly relevant for Indigenous communities whose cultural practices are tied 

to land and agriculture. The use of their agricultural data without proper consent risks the exploitation of 

their privacy and traditional knowledge. Furthermore, as Bronson (2019) note, DATs are predominantly 

designed for large farms and major crops, which deepens the divide between farmers who can afford 

these capital-intensive technologies and those who cannot. This raises broader questions about equity 

and access in the adoption of DATs, particularly for smallholders and marginalized communities. 
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DISCUSSION: 

This scoping review takes a holistic view of the innovation process, examining it from the ideation and 

research & development (R&D) phases through to commercialization, adoption, and diffusion within 

Canadian crop production systems. By integrating both technical and qualitative data within this sectoral 

innovation framework, we aim to develop a nuanced understanding of DAT innovations and the dynamics 

shaping their adoption. We present findings from research on the development, validation, and adoption 

of DATs. The results discussed stem from experimental studies on various DATs, focusing on the validation 

of data processing methods. These studies predominantly explore the use of proximal and remote sensing 

techniques for estimating or predicting soil and crop properties, yield forecasting, fertilizer optimization, 

and weed control. Proximal soil sensing (PSS) offers non-invasive, real-time measurement of soil 

properties, with sensor selection tailored to specific attributes for better accuracy. On-the-go sensors, 

though efficient, may disrupt soil, prompting the development of tools like the OSA, which minimizes 

disturbance in harder-to-access areas. Remote sensing with satellites and UAVs provides scalable insights 

into soil and crop properties; high-resolution sensors like RapidEye and Sentinel-2 allow for detailed zone 

delineation, aiding precision management practices such as variable-rate nitrogen application. Thematic 

maps created through digital soil mapping (DSM), supported by machine learning, integrate multiple data 

sources to improve soil property predictions, supporting more informed and sustainable management. 

Soil moisture estimation also benefits from active and passive satellite sensors like SAR and L-band 

radiometers, although vegetation interference remains a limitation. Ongoing model improvements, such 

as the Water Cloud Model, aim to enhance moisture predictions. Machine learning supports soil moisture 

estimation and emerging methods like cell phone imaging of soil organic matter, although data accuracy 

is affected by vegetation cover.  

Precision agriculture faces significant challenges in capturing high spatial variability across fields (Hosseini 

et al. 2015). Remote sensing addresses this issue through multispectral and hyperspectral Earth 

observation images that analyze the spectral signatures of vegetation and soil. These spectral signatures 

support early-stage crop monitoring, though environmental factors like cloud cover can sometimes hinder 

their accuracy. Synthetic Aperture Radar (SAR) sensors offer a solution by operating independently of 

weather conditions, making them particularly valuable in regions with frequent cloud cover (Ghosh et al. 

2022). 

Advances in machine learning and deep neural networks have significantly enhanced the estimation of 

crop biophysical parameters, such as biomass, canopy nitrogen weight, and chlorophyll content. Deep 

learning approaches, particularly deep artificial neural networks, exhibit strong predictive capabilities, 

especially when paired with SAR polarimetric data and vegetation indices (Bahrami et al. 2021). Moreover, 

models like the Water Cloud Model (WCM) effectively estimate microwave backscattering coefficients 

over vegetation-covered surfaces, supporting precise assessments of soil and crop moisture (Ghosh et al. 

2022). For crop yield prediction, remote sensing tools rely on vegetation indices (e.g., NDVI, EVI) and 

agroecosystem models (e.g., DSSAT) to analyze crop responses under diverse conditions. These diverse 

DATs contribute to data-driven agriculture, offering valuable insights for producers and policymakers, 

though variability in crop types, methods, and conditions requires ongoing validation. 
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This review focused on studies conducted from 2013 onward to capture recent developments and newer 

validation studies. Many studies utilized mature digital technologies available commercially, though these 

tools often served as validation frameworks for testing new data analysis methods. Notably, the accuracy 

of DAT applications depends heavily on specific variables such as soil and crop types, data sources, 

machine learning techniques, and regional agroclimatic conditions. High-resolution, high-frequency data 

from satellite or drone imagery, combined with multiple sensors, tend to improve predictions for soil 

properties, crop yields, and disease detection. However, no single algorithm can consistently predict or 

map soil and crop properties across all conditions, underscoring the need for algorithms tailored to 

specific data types, crop-soil combinations, and regional applications. 

Decision support systems (DSSs), such as DSSAT models, show promising results in simulating crop growth 

and yield by integrating soil, climate, and farm management data. However, like other DATs, these models 

are often validated under limited conditions, and their insights depend on high-quality data. Equipment 

manufacturers and service providers are the primary users of these tools, while farmers, as secondary 

users, rely on the predictions for decisions on planting, fertilization, and irrigation. Achieving robust 

outcomes from these tools requires that machine learning and other models be trained with datasets 

from diverse regions, such as various provinces in Canada. The studies included in this review reveal that 

the research is disproportionately concentrated in Eastern Canada. Among the 35 experimental studies 

fully or partially funded by federal government agencies, the majority were conducted in Ontario 

(seventeen) and Quebec (six), while only seven studies took place in Western Canada, a region critical to 

the production of principal field crops. This uneven distribution underscores a geographic imbalance in 

research efforts within Canada's agricultural sector. Additionally, a disparity exists in research funding 

sources: more than half of the studies were supported fully or partially by federal agencies, whereas only 

a quarter received provincial funding. Improving the spatial distribution of research efforts will require 

enhanced coordination between federal and provincial funding bodies. A similar pattern was observed in 

research on emission estimation methodologies for Canada, further indicating the need for better 

alignment within the country’s research funding ecosystem. Given Canada’s diverse cropping systems and 

climatic conditions, there is a critical need to refine and validate these models under a wider range of 

scenarios before widespread adoption by farmers or technology service providers can be recommended. 

Overall, this review presents forward-looking research on DATs, many of which are still in the prototype 

phase and far from commercialization. Advanced sensor systems, such as soil analyzers and multi-sensor 

platforms, require further validation and model refinement before moving into production. Adoption of 

these DATs will come much later in the innovation process. However, much of the literature emphasizes 

the importance of exploring not only the technical development of DATs but also the socio-cultural 

dimensions and challenges that may arise with their widespread adoption, particularly related to the 

collection and processing of large amounts of farm data. A major concern in this context is data ownership 

and control. Farmers often find themselves on the losing side, as large corporations own and control the 

data. However, the data is often aggregated, and individual farm data has limited standalone value. One 

proposed way to address this imbalance is by compensating farmers through dividends derived from 

corporate profits, as the data contributes to product development and improved services. 
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Several initiatives aim to address issues of data interoperability and transparency. For instance, the 'Ag 

Data Transparent' initiative certifies companies that follow key principles, including simple contracts, 

farmer ownership of data, transparency in data use, and data portability. Portability ensures that farmers 

can transfer their data to other platforms unless it has been aggregated. Additionally, international 

standards such as ISOBUS (ISO 11783) and ADAPT’s open-source plug-and-play model enhance the 

integration of PA tools, promoting more transparent and efficient data use (Phillips et al. 2019). Big 

AgTech companies like John Deere have started joining these initiatives, transitioning from closed, top-

down market models to more networked models that involve transactional data exchanges between 

farmers and purchasers. 

The research on technical and sociopolitical aspects of DATs in Canada reveals a layered and evolving 

innovation landscape. While experimentation and validation of DATs are significantly advancing, their 

transition DATs into production and adoption phases hinge upon the strength of innovation of ecosystem 

with diverse actors. However, the discourse on DATs revolves around manufacturers and places little 

emphasis on farmers and their needs and challenges. Some authors discuss the implications of the 

inherently skewed approach and suggests inclusion of all stakeholders and their perspectives in the 

innovation process to achieve the intended outcomes of digital transition. 

CONCLUSION AND POLICY RECOMMENDATIONS: 

The review of Digital Agricultural Technologies (DATs) in Canada reveals the complexity of integrating 

innovative digital tools into crop production, shaped by both technical advancements and socio-political 

factors. Canada’s distinct innovation framework, characterized by public sector-led research funding, 

influences how DATs are developed, validated, and adopted. While the technical studies provide valuable 

insights into the potential of emerging technologies like proximal and remote sensing systems, the socio-

technical dimension cannot be overlooked. 

The adoption and diffusion of DATs are not merely technical matters but are influenced by institutional, 

regulatory, and social factors unique to Canada, including emission reduction targets, market 

competitiveness as a food exporter, and data sovereignty issues. Furthermore, as many technologies are 

still in experimental stages, their widespread use has yet to be fully realized, underscoring the need for 

continued research and validation across diverse Canadian agro-climatic conditions. 

By focusing on the Canadian context, this review provides a nuanced understanding of the barriers, 

drivers, and frameworks shaping DAT adoption, laying the groundwork for future policy directions that 

promote responsible research and innovation while addressing data governance, privacy, and security 

concerns. The synthesis of both technical and social science literature emphasizes that, while Canada has 

the potential to lead in digital agriculture, it must navigate these challenges to ensure the successful, 

sustainable integration of DATs into its agricultural systems. 

This study has several limitations. The research highlight results of the DATs and methods that are in the 

development and validation stage and does not capture the full spectrum of technologies under 

commercial use or their successes and adoption challenges. Findings of this study are specific to Canadian 

crop production sector and may not be entirely generalizable to other jurisdictions. This also excludes 
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comparative insights from other countries and misses out on lessons learned from international best 

practices that could be applicable to Canadian research. Future research could focus on these areas and 

review the role of policy frameworks in shaping the future of DAT diffusion by strengthening the 

innovation ecosystem. 

Based on findings from the reviewed studies and insights generated through this scoping review, several 

policy recommendations emerge to facilitate the development and broader adoption of DATs in Canada: 

Enhance Collaboration Across the Innovation Ecosystem: Policymakers should promote greater 

collaboration among key stakeholders, including farmers, equipment manufacturers, venture capitalists, 

and researchers, ensuring that all parties are involved early in the design, validation, and scaling stages. 

By aligning innovations with the practical needs of farmers and securing venture capital support, the 

commercialization of DATs can be accelerated. The normative STS studies propose an RRI framework with 

a systematic inclusion of stakeholder - farmers, researchers, funders, technology developers and 

policymakers - to enhance the social and ethical appropriateness of DATs (Bronson 2018; Duncan 2023; 

Ebrahimi, Sandra Schillo, and Bronson 2021). RRI can potentially address issues regarding equity in 

research funding, gains distribution of dividends from technological advancement, addressing market 

monopolies, fairness in data ownership and sustaining social and ecological.  

Optimize Research Funding Allocation: To enhance the effectiveness and future applicability of DATs in 

Canada, it is recommended that federal research funding be strategically diversified to support spatially 

varied studies across the country, particularly in crop-dense western provinces. Given that federal funding 

is a major source, a target-oriented allocation of resources should be implemented to focus on regions 

with high agricultural output, such as Saskatchewan, Alberta, and Manitoba. This would ensure that more 

field data is gathered from areas where it is most relevant for DAT development and deployment. By 

expanding the geographic distribution of funded research, policymakers can promote the generation of 

region-specific data that better reflects Canada's diverse agroecological conditions, ultimately leading to 

more robust and scalable DAT solutions for Canadian agriculture. 

Strengthen Coordination in Research Funding: Improved coordination between federal and provincial 

funding agencies is essential to promote more comprehensive data collection from diverse agroclimatic 

regions and cropping systems across Canada. This will enhance the accuracy of DAT applications, ensuring 

that technologies reflect the distinct conditions of Canadian agriculture. 

Promote Data Interoperability and Transparency: While regulatory interventions are often met with 

skepticism, policies that incentivize initiatives such as ‘Ag Data Transparent’ can foster greater 

transparency and trust in data ownership, use, and privacy. Encouraging data interoperability ensures that 

farmers can access and utilize their data across platforms, promoting broader adoption. 

Encourage Private Sector Involvement in Research and Commercialization: Canada’s research funding 

framework is predominantly public sector-driven, particularly by federal agencies. This lack of private-

sector engagement has hindered commercialization support for startups emerging from universities. To 

address this, policymakers should incentivize private-sector involvement through measures like R&D tax 

credits, fostering public-private partnerships, creating innovation hubs, and expanding co-funded 

programs to bridge the gap between research and market adoption. 
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Adopt an RRI Framework: Policymakers should integrate ethical and equity considerations into the DAT 

innovation process using the RRI framework. This approach ensures that issues such as social inclusion, 

data governance, and transparency are addressed early in the development and deployment of DATs, 

ultimately guiding policy recommendations that promote inclusive and socially responsible innovation in 

the agri-tech sector. 

These recommendations aim to foster a more robust and inclusive innovation ecosystem, ensuring that 

DATs are not only technologically advanced but also widely adopted, equitable, and socially responsible. 
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